SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 ALGEBRA AND CALCULUS

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

a Reduce the matrix A = -1 3 2 3 2
5 1 into Echelon form and find its rank?
4 5 COT L2 <u>₹</u>

Solve the system of equations x+2y+3z=0, 3x+4y+4z=0, 7x+10y+12z=0. C01

L2

6<u>M</u>

Verify Cayley Hamilton theorem for $A=\begin{bmatrix}1&2&-1\\2&1&-2\\2&-2&1\end{bmatrix}$ and find A^{-1} & A^4 C01 L212M

using Cayley-Hamilton theorem.

UNIT-II

a Verify Lagrange's mean value theorem for $f(x) = log_e x$ on [1, e]

C02

L2

EM

6M

Expand sin x in powers of $(x - \frac{\pi}{2})$ upto the term containing $(x - \frac{\pi}{2})^4$ by Taylor's series. CO2 L2

a Verify if u = 2x - y + 3z, v = 2x - y - z, w = 2x - y + z are -functionally dependent and if so, find the relation between them.

C02

L2

6M

6M

b Find a point on the plane 3x + 2y + z - 12 = 0 which is nearest to the C02. L4

UNIT-III

5 a Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$ b Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyzdzdydx$

CO3 L2

6M

CO3

L₂

6M

Change the order of integration and evaluates $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$

UNIT-IV

a Define Divergence of a vector point function.

Find the divergence of $\bar{f} = (xyz)i + (3x^2y)j + (xz^2 - y^2z)k$

C04

L2

6M

CO3

L2

12M

CO4

L₃

6M

b Find the angle between the normal to the surface $xy = z^2$ at the points

(4,1,2) and (3,3,-3).

Show that the vector $\vec{f} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational and find its scalar potential C04

Prove that $div(curl \bar{f})=0$ where \bar{f} is vector point function.

L2 **8**

CO4 L2

6M

rectangle in xy-plane bounded by x = 0, x = a, y = 0, y = b. If $\overline{F} = (x^2 + y^2)i - (2xy)J$, then evaluate $\int_C \overline{F} dr$ where 'c' is the CO5 L2

12M

2M

UNIT-V

10 a State Stoke's theorem. b Evaluate by Green's theorem $\int_C (y - \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines $y=0, x=\frac{\pi}{2}, \pi y = 2x$ CO5 L2 10M CO5 L1

O.P.Code: 20HS0848

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 ENGINEERING PHYSICS

(Common to CE & AGE)

	m:		(Common to CE & AGE)			
	111	me	: 3 Hours	Max.	Marl	ks: 60
			(Answer all Five Units $5 \times 12 = 60$ Marks)	-		
	1		UNIT-I			
	1	a	State and explain principle of superposition.	CO ₁	L2	6M
		b	Define interference and summarizing the importance conditions to get	CO ₁	L2	6M
			sustained interference.	7		5 ST
	•		OR			
	2		Describe Fraunhofer diffraction due to double slit and derive the conditions for principal maxima, secondary maxima and minima.		L2	8M
		b	A plane transmission grating having 4250 lines per cm is illuminated	. CO1	L4	4M
			with sodium light normally. In the second order spectrum, the spectral			
			lines are deviated by 300. What is the wavelength of the spectral line?			
			UNIT-II			
	3	a	What is (i) Unit cell (ii)space lattice (iii) Bravais Lattice iv)Lattice parameters.	CO2	L1	4M
		b	Explain the various types of crystal systems with a neat sketch and	CO2	L4	8M
8			examples.			
	4		OR			
	4	a	Explain how the X-ray diffraction can be employed to determine the crystal structure.	CO2	L4	9M
		b	The Bragg's angle for reflection from the (111) plane in a FCC crystal is	CO ₂	L4	3M
			19.20 for an X-ray wavelength of 1.54 A.U, Calculate cube edge of the	19		
		7	unit cell.		е,	
			UNIT-III			
	5	a	Define absorption coefficient of sound and derive it?	CO ₃	L4	7M
		b	A class room of volume 360 m3 has a reverberation time 1.6 seconds.	CO ₃	L4	5M
			Calculate the total sound absorption coefficient of the class room?	42		
	_		OR			0.0
	6		Explain Piezoelectric effect.	CO ₃	L2	4M
		b	Describe the application of Ultrasonic in non-destructive testing (NDT)	CO ₃	L2	8M
			of material.			
			UNIT-IV		7	
	7		What is Hooke's law? Explain.	CO4	L1	4M
		b	Describe the behavior of a wire under an increasing load.	CO ₄	L2	8M
			OR			
	8		Classify different types of beams.	CO ₄	L2	8M
		b	Obtain an expression for the internal energy due to strain.	CO ₄	L4	4M
			UNIT-V			
	9	a	Explain the Type-I and Type-II superconductors.	CO ₅	L2	8M
		b	What is Meissner effect? Explain how Superconductors are behave like	CO ₅	L1	4M
10			a Diamagnetic material.			
			OR	20		
	10	a	Explain Sol-Gel technique for synthesis of nanomaterial.	CO5	L2	8M
		b	What are the advantages of sol-gel process?	CO ₅	L1	4M
			*** END ***			

O.P.Code: 20HS0849

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 APPLIED PHYSICS

(Common to CSE, CSIT, CSM, CIC, CAD, CCC, CAI)

		(Common to CSE, CSIT, CSM, CIC, CAD,CCC, CAI)			100
Tin	ie:	3 Hours	Max. M	larks:	60
		(Answer all Five Units $5 \times 12 = 60$ Marks)	o "as a	. 2	
_1	1	Describe the formation of Newton's ring with necessary theory with relevant diagram and derive the expressions for dark and bright fringes.	CO1	L1	8M
	1	In a Newton's rings experiment, the diameter of the 5th ring is 0.30 cm and the diameter of the 15th ring is 0.62 cm. Calculate the diameter of	CO1	L2	4M
		the 25th ring.			
2	g	OR In the study of Fraunhofer diffraction due to similar to the			
	ı. L	In the study of Fraunhofer diffraction due to single slit how the diffraction fringes formed.		L2	6M
	U	Obtain conditions for bright and dark fringes in single slit diffraction pattern and draw intensity distribution.	CO1	L2	6 M
87		UNIT-II			
3		Derive the Maxwell's equations in differential and integral form. OR	CO ₂	L4	12M
4	a	Total of chergy balles in solids.	CO ₂	L2	6M
	b	Classify the solids into conductor, semiconductor & insulators based on band theory of solids.	CO ₂	L4	6M
	Α.	UNIT-III			
5	a		CO ₃	L2	8M
	b	Explain population inversion.	CO3	Τa	47.4
		OR	CO3	L2	4M
6	a	Describe optical fiber communication system with block diagram.	CO3	L2	8M
	b	Mention the application of optical fiber in sensors.	CO3	L1	4M
Н.		UNIT-IV		~1	4171
7	a	What is Fermi level? Prove that the Fermi level is lies exactly in between conduction band and valance band of intrinsic semiconductor.	CO4	L2	6M
	b	Determine the energy band gap of the intrinsic semiconductor.	CO4	L2	6M
		OR	004		OIVI
8	a	Explain the formation of p-n junction.	CO4	L2	6M
	b	Describe the construction and working mechanism of Photodiode. UNIT-V	CO4	L2	6M
9	a	What is Meissner effect? Explain how Superconductors are behaving like a Diamagnetic material.	CO5	L2	6M
Ŷ	b	Explain DC and AC Josephson effects in superconductors.	CO5	L2	6M
10	a	Explain why surface area to volume ratio years long for none water it	GO -	î	-
10	b	Explain why surface area to volume ratio very large for nano materials. Explain ball milling technique for synthesis of nanomaterial.	.CO5	L2 L2	6M 6M
- 1		*** END ***		0.12	1.5

O.P.Code: 20HS0802

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 APPLIED CHEMISTRY

(Common to ECE & EEE)

Ti	me: 3 Hours	Max.	Marl	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I		\$	
1	a Define electrode potential.	CO1	L1	02M
	b Derive the Nernst equation for a single electrode potential and explain		L2	10M
	the terms in equation and write its applications.			
	OR		0.	21
2	Define fuel cell? Describe the construction and working principle and uses	CO1	L2	12M
	of Hydrogen-Oxygen fuel cell with neat diagram?			
	UNIT-II			
: 3	a Write the postulates of molecular orbital theory.	CO ₂	L2	6M
	b Sketch the molecular orbital energy diagram for Oxygen (O2).	CO ₂	L3	6M
	Explain its bond order and magnetic property based on MOT theory.			
	OR	×	- 100	v .
4	a Explain the salient features of Crystal Field Theory.	CO ₂	L2	6M
	b Draw the shapes of various d – orbitals and explain why they are splitted	CO ₂	L3	6M
	into two groups in an octahedral ligand field.			
	UNIT-III			
5	Define polymerization? Explain the types of polymerizations with	CO ₃	L2	12M
	examples.			
	\mathbf{OR}		3	
6	a What are conducting polymers? How are they classified?	CO ₃	L1	4M
	b Write the synthesis and engineering applications of Poly acetylene	CO ₃	L ₂	8M
T.	conducting polymer.			
	UNIT-IV			
7	Explain the principle, instrumentation & applications of UV-visible	CO ₄	L2	12M
	spectroscopy with neat diagram.	(5		. ".
1	OR	0.		
8	a What is meant by Chromatography? Write about main parts of HPLC.	CO ₄	L4	9M
	With neat diagram.			
	b Write about the important applications of HPLC Chromatography.	CO ₄	L4	3M
	UNIT-V	81	2 1	
9	a Draw the band digrams for conductors, semi –conductors and insulators.	CO5	L3	6M
	b Write short notes on Internsic and Externsic Semiconductors.	CO ₅	L2	6M
10	OR			
10	a Write a short notes on Carbon Nano Tubes.	CO5	L1	6M
	b Write a note on Fullerenes.	CO ₅	L1	6M
	*** END ***			

O.P.Code: 20CS0501

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 C PROGRAMMING AND DATA STRUCTURES

(Common to CSE, CSIT, CSM, CIC, CAD, CCC, CAI, CE, AGE)

Tim		Max.	Marks: 60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)				
1	a List out the various operators available in C.	CO1	L1	2M	
•		CO1	L2	10M	
	i. Arithmetic Operator			20112	
5.	ii. Logical Operator				
	iii. Conditional Operator				
	iv. Increment/Decrement Operator				
	v. Assignment Operator				
2	OR	000	. .	43.5	
2		CO ₂	L4	4M	
		CO ₂	L2	8M	
2	UNIT-II	000		<i>(</i> 3.7	
3	1 1	CO3	L1	6M	
	b Write a C program to swap two numbers using functions. OR	CO ₃	L3	6M	
4		CO3	L4	12M	
7	Define burng. Explain the different string handling functions with example.	COS	LT	12111	
	UNIT-III				
5		CO3	L1	6M	
5		CO3	L2	6M	
	OR	003		UIVI	
6		CO3	L1	6M	
	suitable example program.				
	b Explain to declare and initialize a structure? Mention with an example.	CO ₃	L2	6M	
	UNIT-IV				
7	List the various operations that can be performed on stack? Explain with	CO5	L2	12M	
	suitable example.				
	OR				
8	a Distinguish between singly linked list and doubly linked list.	CO6	L4	6M	
		CO ₆	L1	6M	
	UNIT-V				
9	, , , , , , , , , , , , , , , , , , , ,	CO6	L1	12M	
	search with suitable example.				
	OR				
10	Explain the algorithm for merge sort and give a suitable example.	CO ₆	L2	12M	

*** END ***

O.P.Code: 20ME0353

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 THERMAL FLUID ENGINEERING

(Electrical & Electronics Engineering)

~ :	_	(Electrical & Electronics Engineering)			
Time	e: 3		Max. Ma	ırks:	60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Explain briefly about cooling towers and Coal handling with near	CO1	L2	6M
		diagram.			
	b	What is need of Chimney in thermal power plant and explain their	CO1	L1	6M
		types?			
		OR			
2	a	Describe in detail about Quasi Static Process with schematic diagram?	CO ₂	L1	6M
	b	What is thermodynamic equilibrium? Explain it in detail?	CO ₂	L1	6M
		UNIT-II			
3	a	Write short notes on Mollier Diagram and Dryness Fraction.	CO ₂	L2	6M
		What is a boiler? How is it classified?	CO ₃	L3	6M
		OR			
4	a	Explain the feed pump and economizer.	CO2 -	L2	6M
		What is the difference between super heater and air pre heater? Explain		L2	6M
		in detail with diagrams.			
		UNIT-III			
5	я	Write a short note on Vapour Pressure, surface tension and capillarity.	CO5	L2	6M
		Define Atmospheric pressure, gauge pressure and absolute pressures	CO3	L1	6M
		OR	000		OIVI
6	я	Derive an expression for capillary rise and fall in a glass tube	CO4	L3	6M
Ū	b	The capillary rise in the glass tube is not to exceed 0.2mm of water.		L5	6M
	I.	Determine its minimum size, given that surface tension for water in		LJ	OIVI
		contact with air = 0.0725 N/m	•		
		UNIT-IV			
7		Derive Continuity equation in one dimensional form Euler's equation of	· coa	L3	12M
,		motion and Bernoulli's energy equation?		LS	12111
		OR			
8		Write a short note on Pipes in Series and Pipes in Parallel and derive	CO5	L2	12M
Ü		expression for it.			12111
		UNIT-V			
9		Find the force exerted by a jet of water of diameter 75 mm on a	COS	L5	6M
,	а	stationary flat plate, when the jet strikes the plate normally with velocity		LS	OIVI
		of 20 m/s.			
	h	Derive an expression for the hydraulic efficiency when a liquid jet	COS	L4	6M
	D	strikes a single fixed curved vane		L	UIVI
		OR			
10	9	Explain the working of a Pelton wheel with a neat sketch.	CO6	L2	6M
10		State the differences between Pelton wheel and Francis turbine.	CO	L1	6M
	i.	*** END ***		1/1	OIVI
		21.12			

_								
0.	P	.Code: 20EE0251 R20 H.T.No.						
3	,	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y::]	PUTI	rur			
	R	(AUTONOMOUS)		77	14			
	_	3.Tech. I Year I Semester Supplementary Examinations Octo BASIC ELECTRICAL & ELECTRONICS ENGINE			mber	-20)25	
		(Mechanical Engineering)						
		3 Hours Answer PART-A from pages 2 to 20 and PART-B from 21 to 39.	IV	Iax.	Mark	s:	60	
. 1010		(Answer all Six Units 6 \times 1,0 = 60 Marks)			5			
		PART-A						
		UNIT-I						
1	5	State and prove Kirchhoff's laws and explain with suitable example.		CO	i L	2	1074	
•	^	OR		CO	1 14,	4	10M	L
2	Ι	Derive the expression of Star-Delta transformation and Delta to	star	CO	1 L;	3	10M	ŕ
		ransformation.					10171	
5		UNIT-II		V.1				
3	S	State Super position theorem? Calculate the current in 2Ω resistor in	the	CO	2 L3	3	10M	
Si		given circuit using super position theorem.		4	25			
		1Ω 1Ω				- 10	. 2	
		VVV		12		•		
		$+ 10 \vee $ $\geq 2 \Omega$ $10 \geq 1 \wedge $	**	A 120	, Te			i.
73		$I \longrightarrow \mathbb{Z}^{2\Omega}$ $1\Omega \ge 1A \bigcirc$		12		67		
							12	
		OR	60	:9		77 18		
4		Derive the EMF equation of a DC Generator.		CO	2 L3	3	5M	
	b	A 4-pole lap wound dc generator has a useful flux of 0.07wb per p		CO	2 L2	2	5M	
		Calculate the generated emf when it is rotated at speed of 900rpm v						
		the help of prime mover. Armature consists of 440 number		E	~ ~	2	e	
		conductors calculate the generated emf, if lap wound is replaced wave wound?	by					2
		UNIT-III		N N		q.		
5	a			CO	т.		53.4	,
		Calculate the value of torque established by the armature of a 4-pole	חכ	CO3		11.0	5M 5M	
	1.0	motor having 774 conductors, 2 paths in parallel, 24mwb flux per p			, LS	iii	SIVI	
ş		when the total armature current is 50A.	010			9		ž.
×	0	OR					18	
6	Bı	riefly discuss about various types of DC motors with neat sketches.		CO3	L3	:	10M	
		PART-B		ě	8		× .	
		UNIT-IV			3 2		2	
7	a	Explain the working of a PN junction diode under forward and reve	rse	CO ₄	L3		5M	
		bias.			a l		e ⁶⁵ 2	
0	b	Distinguish between conductors, semiconductors and insulators.		CO ₄	L2		5M	
0		OR		0				
8	a	Define 'Ripple Factor' and derive an expression for ripple factor of H	alf	CO ₄	L2	*	5M	3
	h	wave rectifier. Show that the Zener diode can be used as a Voltage regulator with m		001	e v	,398	FD 5	:
	•	Show that the Zener diode can be used as a Voltage regulator with n diagram.	eat	CU4	L3		5M	
		· ·						

O.P.Code: 20CE0101

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 ENGINEERING MATERIALS

74	ENGINEERING MATERIALS	27	1001	2020
Ti	me: 3 Hours (Civil Engineering)			a a gar
	(Answer all Five Units $5 \times 12 = 60$ Marks)	wax.	. Ma	rks: 60
	UNIT-I	6		
1	Describe how bricks are classified.	CO1	L2	12M
` .	OR	2	ــــــــــــــــــــــــــــــــــــــ	14111
2		CO1	12	1234
	formation of the three important types of rocks?	COI	عيد ا	12111
	UNIT-II	ě		p. 6
3	Explain with flow diagrams the dry and wet process of manufacture of	CO3	Ι2	12M
	cement.	003	1/2	12111
	OR			
4		CO3	L2	CM
	importance?	COS	LZ	6M
	b What precautions should be taken while storing cement?	CO2	τ 2	(D.F.
. 5	UNIT-III	CO3	L2	6M
5	10//			
ri .	Exogenous and Endogenous trees.	CO4	L2	6M
	b List the properties of wood and shortly write about any three properties.	CO4	L1	6M
	OR			
6	Explain the damage caused by insects to wood.	CO4	L3	12M
8	UNIT-IV			9.1
7	Specify some important uses of cast iron, wrought iron and mild steel.	CO5	L2	12M
	OR	g 30° 0		X2171
8	Describe in detail testing of steel sections.	CO5	L3	12M
	UNIT-V		110	01
9	What are the various types of hitzman and a late	G 0.6	8 6	5
		CO6	L2	12M
 10	What is meant by aggregate? Briefly describe their classification.		2 850	
х 5	*** END ***	CO6	L2	12M
	· · · END ***	*		

O.P.Code: 20EC0445

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 BASIC ELECTRONICS ENGINEERING

		Briste Ellectronies Endine Ending			
(T)		(Common to CSE,CSM,CAD,CAI,CCC,CSIT & CIC)	e .		
111	ne	: 3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I		ε	-54
1	a	Explain the 2-D representation of the Germanium crystal structure with neat a sketch.	CO1	L1	4M
21	b	Describe the energy band diagrams. OR	CO1	L2	8M
2	a		CO1	L2	8M
	b	Intrinsic materials are not widely used, Explain the reasons?	CO1	L1	4M
3	a	A PN junction diode has a reverse saturation current of 30 μA at a temperature of 1250 C. At the same temperature calculate the dynamic	CO2	L3	4M
	b	resistance for 0.2 V bias in forward and reverse direction. Analyze the current components in a PN diode and derive the expression for diode current.	CO2	L4	8M
		OR			
4	a	Describe Transition and Diffusion capacitances of a PN junction Diode with expressions.	CO2	L5	6M
	b	Discuss about Breakdown mechanisms in PN Junction Diode.	CO2	L2	6M
5	a	Draw the circuit diagram of a Full wave rectifier and with the help of waveforms describe its operation.	CO3	L1	6M
	b	Derive the expressions for Average DC current, Average DC Voltage, RMS Value of Current, DC Power Output, AC Power input and Efficiency of a Full Wave Rectifier.	CO3	L3	6M
		OR		2	51
6	a	Explain the construction and working principle of CLC or π section filter along with derivation for its ripple factor.	CO3	L3	6M
	b	Compare various types of filters. UNIT-IV	CO3	L2	6M
7	a	Explain the current components of PNP transistor.	CO4	L2	6M
	b	Draw the Input and Output characteristics of a BJT in CB Configuration.	CO4	L1	6M
. 1		OR	C04	= 11/1 	OTÄT
8	a	Illustrate Thermistor Compensation Technique.	CO4	L3	6M
		Discuss about Sensistor Compensation Technique.	CO4	L2	6M
		UNIT-V	CO4	LL	OIVI
9	a	Sketch the drain characteristics N-channel JFET.	CO5	L3	6M
Х		Explain the different regions of operation of N-Channel JFET.	CO5	L3 L2	6M
		OR	203	114	OTAT
10	a	Explain voltage divider bias of JFET with neat circuit diagram.	CO6	L4	6M
		Discuss the merits of the voltage divider bias.	CO5	L2	6M
		*** FND ***			0111

Time: 3 Hours O.P.Code: 20ME0301 B.Tech. I Year I Semester Supplementary Examinations October/November-2025 ENGINEERING GRAPHICS SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (Answer all Five Units 5 x 12 = 60 Marks) (Common to ECE, EEE & ME) R20 (AUTONOMOUS) H.T.No. Max. Marks: 60

Draw an Epi-cycloid of rolling circle of diameter 40 mm which rolls point on the curve. 35 mm and eccentricity is 3/4. Also draw the tangent and normal to any Construct an ellipse when the distance between the focus and directrix is CO1

outside another circle (base circle) of 150 mm diameter for one

CO1

97

12M

revolution and construct a tangent and normal at any point on the curve.

16 12M

between the projectors of the points, measured parallel to xy, is 75mm. Draw the projections of the points. Draw lines joining their FVs and point B is 40mm below the HP and 15mm behind the VP. The distance A point A is 20mm above the HP and 50mm in front of the VP. Another NIT-II C02

L1 12M

A line AB 50mm long, has its end A away from the HP and VP than end B. The line is inclined to the HP at 30° and to the VP at 45°. Draw the projections if end A is 35mm above the HP and 50mm in front of the VP.

C02 . II 12M

A regular hexagonal plane of 30-mm side has a corner on HP, and its surface is inclined at 45° to HP. Draw the projections, when the diagonal through the corner, which is on HP makes 30° with VP. UNIT-III C03

7 12M

16

12M

A square pyramid of base 40 mm and axis 60 mm long, Its base lies on VP with its axis parallel to HP. A cut sectional plane, 600 to VP and it A pentagonal prism of base side 30 mm and axis 60mm is resting on one of its rectangular faces on HP, with the axis parallel to VP.Draw its pass 10mm away from the axis. Draw the projections sectional front UNIT-IV C04 CO3

16 12M

Draw the isometric projection of a hexagonal prism of base side 30 mm and axis 70mm. The prism rests on its base on the HP with an edge of A square prism of side of base 40 mm and axis 80 mm long, is resting on its base on HP such that, a rectangular face of it is parallel to VP. Draw the development of the prism. UNIT-V OR COS CO4 L L1 12M

the base parallel to the VP. 12M

10

first angle projection.

Draw three views of the blocks shown pictorially in figure according to

C06

L6

12M

3 21 30

*** END ***

R20

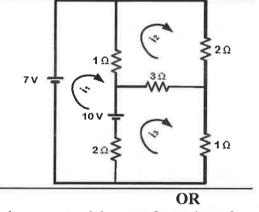
H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 PRINCIPLES OF ELECTRICAL CIRCUITS

(Electronics & Communications Engineering)

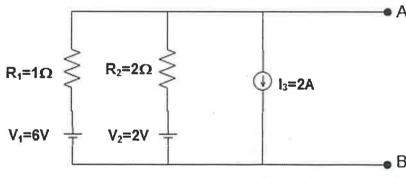
Time: 3 Hours


Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

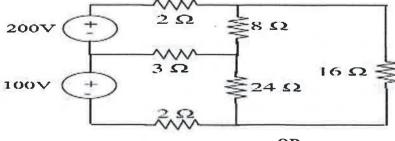
- 1 a Three resistances of values 20, 30 and 50 are connected in series across 20 V DC supply. Calculate,
- CO₁
- L3 6M


- i) Equivalent resistance of the circuit.
- ii) Total current from the supply.
- iii) Voltage drop across each resistor.
- iv) Power dissipated in each resistor
- **b** Find i1, i2, i3 for the given circuit by using Kirchhoff's laws?
- CO₁
- L3 6M

- 2 a Explain in detail about star to delta transformation of a resistive network.
- CO₁
- **6M**

L3

- **b** Determine the equivalent current source between the terminals A-B.
- CO1
- L3 6M

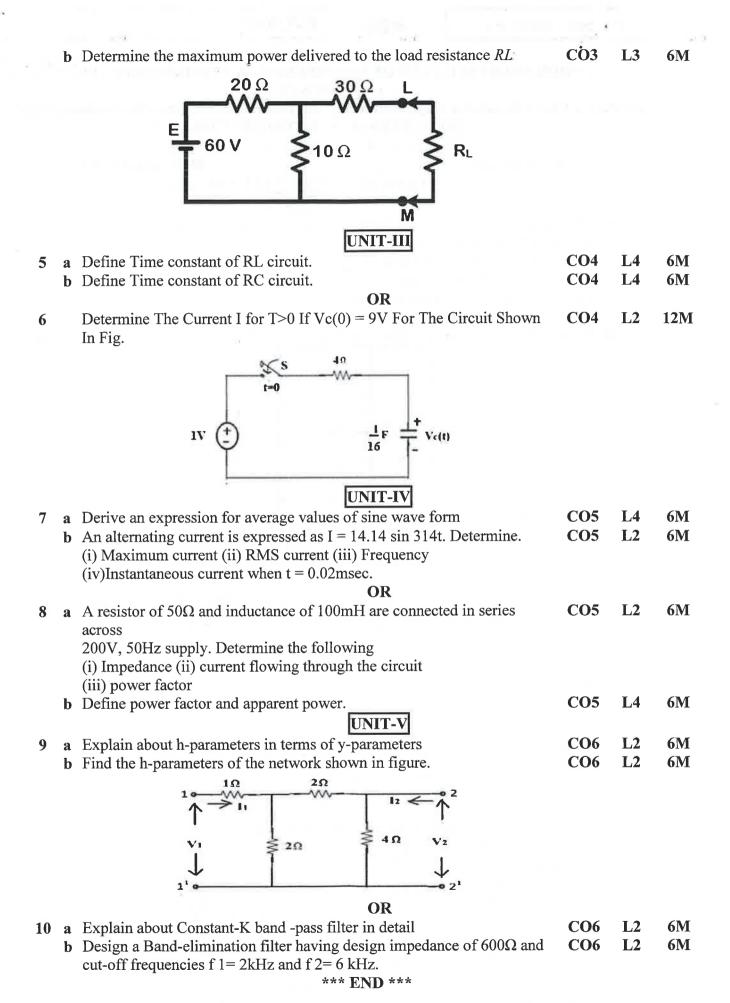


UNIT-II

3 Determine the mesh currents for the circuit shown below.

CO₂

L3 12M



OR

4 a State and prove maximum power transfer theorem.

CO₃

L3 6M

O.P.Code: 20EE0250

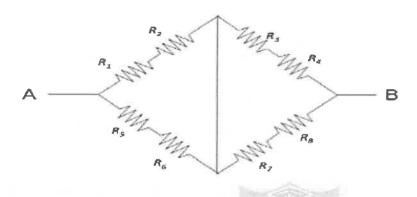
R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

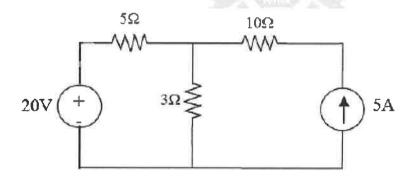
B.Tech. I Year I Semester Supplementary Examinations October/November-2025 PRINCIPLES OF ELECTRICAL ENGINEERING

(Common to CSE, CSIT, CSM,CIC, CAD, CCC, CAI)


Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)


UNIT-I

- 1 a Determine the Equivalent Resistance when the resistors are connected in CO1 L1 6M Series & Parallel.
 - **b** Find the equivalent resistance between AB for the circuit shown bellow. **CO1 L3 6M** $R_1=4\Omega$, $R_2=2\Omega$, $R_3=8\Omega$, $R_4=1\Omega$, $R_5=12\Omega$, $R_6=3\Omega$, $R_7=10\Omega$ & $R_8=5\Omega$

OR

2 a By using superposition theorem find the current flowing through the CO2 L3 6M 30hm resistor.

b State and explain Thevenin's theorem. CO₁ L2 **6M** UNIT-II a Derive an expression for RMS value of sine wave form. **L3** CO₃ **6M b** Explain power factor, admittance, and impedance. CO₃ **L2 6M** a Derive an expression for the voltage and impedance for a series RLC CO3 **6M** circuit excited by a Sinusoidally alternating voltage **b** A resistor of 25Ω and inductance of 60mH are connected in series across **6M** 100V, 50Hz supply. Determine the following: (i) Impedance (ii) power factor

		UNIT-III			
5	a	List the various types of DC Generators and discuss in detail.	CO4	L2	6M
	b	Explain various losses occur in a DC Generator.	CO ₄	L2	6M
		OR			
6	a	Define Torque and derive the expression for torque in a DC.Motor.	CO4	L3	6M
	b	A 4-pole, 500V, Wave wound DC shunt motor has 720conductors on its	CO ₄	L3	6M
		armature. The full-load armature current is 60A and the flux per pole is			
		0.03 Wb armature resistance is 1.2Ω and the brush contact drop is			
		1V/brush. Calculate the full-load speed.			
		UNIT-IV			
7		Discuss Open Circuit and Short Circuit tests on single phase	CO5	L4	12M
		transformer.			
		OR			
8	a	Derive an EMF equation of a single-phase transformer.	CO ₅	L3	6M
	b	A230/110V, 1KVA, single phase transformer is connected to 230V, A.C	CO ₅	L3	6M
		Supply. Calculate (i) Primary current (ii) Secondary current			
		UNIT-V			
9		Discuss the operating principles and essential features of measuring	CO ₆	L2	12M
		instruments.			
		OR			

*** END ***

Explain operating principle of Permanent Magnet Moving Coil (PMMC) CO6 L2 12M

10

instruments